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• Simulate the full time evolution of the relevant Quantum Field Theory


• In principle possible in polynomial time


• Requires very large resources, that are probably not available for a 
very long time


• Simulate the only a subset of the full QFT


• Simulate the low energy behavior (EFT simulation)


• Simulate only a part of the traditional pieces of a full calculation (Short 
distance perturbative, Parton Shower, Hadronization, Other effects)


• Will focus on the Parton Shower (Event Generator) in this talk, but idea is 
very general


• Also LOI by Matchev, Mrenna, Shyamsundar, Smolinsky on similar topic

There are different ways in which quantum computing can 
make theoretical predictions for scattering cross sections
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Quantum computing o↵ers an exponential speed-up in computation times and novel approaches
to solve existing problems in high energy physics (HEP). Current attempts to leverage a quantum
advantage include:

• Simulating field theory: Most quantum computations in field theory follow the algorithm
outlined in [1–3]: a non-interacting initial state is prepared, adiabatically evolved in time
to the interacting theory using an appropriate Hamiltonian, adiabatically evolved back to
the free theory, and measured. Promising advances have been made in the encodings of
lattice gauge theories [4–8]. Simplified calculations have been performed for particle decay
rates [9], deep inelastic scattering structure functions [10, 11], parton distribution functions
[12], and hadronic tensors [13]. Calculations of non-perturbative phenomena and e↵ects
are important inputs to Standard Model predictions. Quantum optimization has also been
applied to tunnelling and vacuum decay problems in field theory [14, 15], which might lead
to explanations of cosmological phenomena.

• Showering, reconstruction, and inference: Quantum circuits can in principle simulate
parton showers including spin and color correlations at the amplitude level [16, 17]. Recon-
struction and analysis of collider events can be formulated as quadratic unconstrained binary
optimization (QUBO) problems, which can be solved using quantum techniques. These in-
clude jet clustering [18], particle tracking [19,20], measurement unfolding [21], and anomaly
detection [22].

• Quantum machine learning: Quantum machine learning has evolved in recent years as a
subdiscipline of quantum computing that investigates how quantum computers can be used
for machine learning tasks [23,24]. As summarized in [25], only a few bona fide applications
of quantum machine learning in a high energy physics setting have appeared: for event
classification [26–28] and exploratory studies of track reconstruction [29,30].

While the current impact of quantum computing on HEP theory and phenomenology is limited,
there is hope that future advances on both quantum devices and quantum algorithms will help
alleviate the anticipated computational crunch in high-energy particle physics. In the planned
white paper we shall try to identify promising opportunities for further applications of quantum
computing in HEP theory and phenomenology, with specific emphasis on event generators and
simulations.
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For collinear emissions from energetic particles squares of 
amplitudes factor, giving probabilistic interpretation

An+1
2

≈ An
2

× P(t)Markovian process

Two possibilities at each t:
1. Nothing happens (no-branch prob )

2. Emission happens (branch prob )

Δ
P × Δ

state = initial_state() 
for t in 1… N: 

if emission_happens(state): 
n = choose_emitter(state) 
state = new_state(state, n) 

write_out(state)
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…but parton shower is completely based on 
probabilities, so all quantum mechanical 
information is lost...


…to get it back, need to compute shower for each 
possible amplitude…
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Number of 
amplitudes grow
exponentially with #
of intermediate particles

Doing this problem on a classical computer is in general 

exponentially hard
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Yukawa theory with two types of fermions and mixing between them

L =f̄1(i/@ +m1)f1 + f̄2(i/@ +m2)f2 + (@µ�)
2

+ g1f̄1f1�+ g2f̄2f2�+ g12
⇥
f̄1f2 + f̄2f1

⇤
�

<latexit sha1_base64="KsAvf/PIKodS0nGXOONo+byeMZk="></latexit>

Very simple Feynman rules

g1 g2 g12 g12

A very simple toy model
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L =f̄1(i/@ +m1)f1 + f̄2(i/@ +m2)f2 + (@µ�)
2

+ g1f̄1f1�+ g2f̄2f2�+ g12
⇥
f̄1f2 + f̄2f1

⇤
�

<latexit sha1_base64="KsAvf/PIKodS0nGXOONo+byeMZk="></latexit>

The mixing g12 gives several interesting effects

Different real emission amplitudes
give rise to interference

Virtual diagrams give rise to
flavor change without radiation

Need to correct both real and virtual effects
Similar to including subleading color

A very simple toy model

Simulating this model in full generality on classical computer exponentially hard
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A quantum computer can compute the 2nf amplitudes 
using polynomial number of operators

Quantum

shower

1

|000 . . . 0i ! A1 | 1i+ . . . An | ni (1)

Goal of algorithm is to create superposition of final states with 
correct relative amplitudes

Repeated measurements of the final state selects states with 
probability |Ai|2      can be used as true event generator⇒
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A quantum computer can compute the 2nf amplitudes 
using polynomial number of operators
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type of fermion can be treated using a density matrix for-
malism [23], where each splitting function is represented
through a splitting matrix as

Pi!j�(✓) |fii hfj | . (10)

In the limit of g12 ! 0 we have Pi!j�(✓) ! �i,jg
2
i P̂ (✓),

but for non-zero g12 the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.

In what follows, we construct a quantum algorithm
to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algorithm
is to encode the particles as qubits (Appendix A) and
first rotate to a particle basis where there is no mix-
ing between fermion states (Appendix B). In this su-
perposition basis, emissions between states are uncorre-
lated. Sudakov factors can then be used to govern the no
emission probability of the uncorrelated fermions. The
bulk of the quantum circuitry will then be dedicated to
book-keeping, to encode the emission history and decide
which fermions/bosons radiate/split at a given step in
the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm for one of N

steps. The circuit calls for six registers, which are are de-
tailed in Appendix A and summarized in Table I. The ini-
tial state consists of nI particles (which can be fermions
or bosons) in the f1/2 basis. One starts by rotating this
initial particle state from the f1/2 basis to the fa/b ba-
sis, using a simple unitary R operation discussed in Ap-
pendix B. Then, a series of operations evolving the par-
ticles states are applied: the number of particles of each
type are counted (Ucount), Sudakov factors are used to de-
termine if an emission occurred (Ue), given an emission, a
particular particle is chosen to radiate/branch (Uh), and

the resulting particle state is updated (U (m)
p ). Finally,

the state is rotated back to the f1/2 basis through the
R

† operation. This process is repeated for all of the N

steps. The rotation needs to be performed separately at
each step because in general the matrix R depends on ✓

through the running of the couplings. At each step, there
are four operations, which are summarized in Table II.
More details can be found in the appendices.

Performing the evolution in the fa/b basis and then
rotating to the f1/2 basis, creates interferences between
equivalent final states which had di↵erent intermediate
fermions. One event is generated by measuring all of
the qubits after the final rotation back to the f1/2 basis.
By repeating the entire process, we can generate a large
number of events which we can then use to compute phys-
ical observables for our theory. The number of standard
quantum gates (single qubit and CNOT gates) required
at each step is discussed in Appendix I and summarized
in Table II.

Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog2(N + nI)e
|ei Did emission happen? 1

|n�i Number of bosons dlog2(N + nI)e
|nai Number of fa dlog2(N + nI)e
|nbi Number of fb dlog2(N + nI)e

TABLE I: All of the registers in the quantum circuit with
the number of qubits they require for N steps and nI initial
particles. The symbol d. . .e denotes the ceiling function.

|pi / R
(m) p p U

(m)
p R

(m)†

|hi / Uh h

|ei U
(m)
e e

|n�i /

Ucount

n�

Uh|nai / na

|nbi / nb

FIG. 1: Quantum circuit block for one step, to be repeated
N times for the full circuit.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. In order
to show an implementation of our algorithm, we there-
fore consider a special case that is amenable to measure-
ment on existing technology. This special case ignores
the � ! ff̄ splitting (naturally suppressed in gauge the-
ories, but not in the scalar-only theory), ignores the run-
ning coupling, and has only a single fermion (possibly
in a superposition) as the initial state. This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix I). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires ngates = 12N + 2 (Appendix G).
This model is however still su�ciently complex that the
classical MCMC described earlier2 fails to capture im-
portant quantum e↵ects when g12 6= 0.
Figure 2 presents the normalized di↵erential cross sec-

tions of four examples from a class of observables,
P

i ✓
↵
i ,

for both classical simulations/calculations, quantum sim-
ulators [29], and chip experiments of public and Hub

2
While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix K. However, this algorithm only works when ne-

glecting the � ! ff̄ and cannot solve our full model.

|nii , |hi :
<latexit sha1_base64="aSDWAvLXbO+hyjN94cMn5TqobSY="></latexit>

Integer registers

7

Appendix A: The registers of the quantum circuit

The quantum circuit introduced in this paper has a
total of 6 registers. The first two registers are physical
registers, holding the information created by the circuit.
The final 4 registers are work registers, which means that
they are reset to their original value after each step. Thus
they hold no information after the circuit has been run,
and the same work registers can be used for each step.
As discussed in other appendices, additional work qubits
will be necessary when actually implementing some of
the more involved circuit operations.

The first register, |pi, contains the flavor information
about each particle. Each particle in the system can be
in one of 6 states |0i, |�i,

��fa/b
↵
, and

��f̄a/b
↵
. To encode

these 6 states one requires 3 qubits, and we choose the
representation as

|pii =

0

BBBBBBBBBBBB@

000

001

010

011

100

101

110

111

1

CCCCCCCCCCCCA

=

0

BBBBBBBBBBBB@

0

�

�
�

f1/fa

f2/fb

f̄1/f̄a

f̄2/f̄b

1

CCCCCCCCCCCCA

, (A1)

where the third and fourth states are not used and one
chooses f1/2 and fa/b before and after the basis change
discussed in Appendix B, respectively. Since there can
be up to N + nI particles in the system (where nI is the
initial number of particles and N is the number of steps),
one needs a total of

dim[|pi] = 3(N + nI) (A2)

qubits to encode this register.
The second register, |hi, holds the information about

which particle emitted a particle at a given step. At the
start of the m

th step (where the first step has m = 0),
there are up to m + nI particles that can have emitted
the extra particle, and at the m

th step |him needs to be
able to hold the integers 0 . . .m+nI (where 0 denotes no
particle having emitted something). When considering

N steps, the register therefore needs to hold
PN�1

m=0(m+
nI) = N(N + 2nI + 1)/2 integers, requiring

dim[|hi] = dlog2[N(N + 2nI + 1)/2]e , (A3)

, where d. . .e denotes the ceiling function. It might be
simpler to have each |him be of the same size, in which
case each |him would need to hold the integers 0 . . . N +
nI � 1. This would require

dim[|hi] = Ndlog2[(N + nI)]e (A4)

qubits.
The third register, |ei temporarily holds the informa-

tion whether an emission has occurred in the current step.

This is binary information, and therefore requires a single
qubit, giving

dim[|ei] = 1 . (A5)

The remaining three registers are count registers,
which temporarily hold the information about how many
bosons, fermions of type a and fermions of type b (count-
ing both f and f̄) are in the current state. Since the
count registers are used for every step, they have to hold
the integers 0, . . . , N + nI . We again choose the binary
representation to hold these integers, and one needs

dim[|n�i] = dim[
��na/b

↵
] = dlog2[(N + nI)]e (A6)

qubits.
The summary of these registers was already shown in

Table I.
At the start of the circuit, all work registers |ei, |n�i,

|nai, and |nbi are initialized to |0i, where for the count
registers |0i refers to the integer 0 in binary notation.
For the physical registers, all history registers |him as
well as the particle registers |pim>nI

are initialized to
zero. The only non-zero registers are |pimnI

, which are
initialized to the initial particle content (possibly in a
superposition).

Appendix B: Diagonalizing the splitting matrix

In this appendix we discuss the rotation required to
go from the basis with fermions f1/2 to a new basis with
fa/b. The splitting matrix in Eq. (10) can be written in
terms of the coupling constants g1, g2 and g12 as

Pi!j�(✓) = Gij P̂ (✓) ⌘
 

g1 g12

g12 g2

!
P̂ (✓) . (B1)

The coupling matrix G can be diagonalized as

G
diag = UGU

† =

 
ga 0

0 gb

!
, (B2)

with

ga =
g1 + g2 � g

0

2
, gb =

g1 + g2 + g
0

2
, (B3)

where

g
0 = sign(g2 � g1)

q
(g1 � g2)2 + 4g212 . (B4)

The matrix U in Eq. (B2) is given by

U =

 p
1� u2 u

�u
p
1� u2

!
, (B5)

with

u =

s
(g1 � g2 + g0)

2g0
. (B6)
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w`�1 . . . . . .

w`�2 . . . . . .

. . . . . . . . .

w2 . . . . . .

w1 . . . . . .

q1 X • . . . . . . •

q2 • . . . . . . •

q3 . . . . . .

. . . . . . . . .

q`�1 . . . • • . . .

q` . . . . . .

FIG. 8: Decomposition of the U+ gate for integers as large
as a, where ` = dlog2(a)e.

controlled on the particle state |pi being a type a fermion,
a type b fermion or a � boson. As illustrated in Fig. 9, the
first two cases require controlling on two qubits from |pi,
while the latter case requires controlling on all three the
qubits from |pi. These controls are applied to all of the
operations shown in Figure 8, yielding many instances
of an X-gate being controlled on multiple qubits. It is
a known result (see e.g. Ref. [37]) how to decompose a
C

(n)(U) operation, requiring n�1 work qubits, 2⇥(n�1)
To↵oli gates plus a C(U) operation. A To↵oli gate re-
quires 16 standard gates while a C(U) operation where
U is real requires 5 standard gates in general (although
if U = X it is simply a CNOT gate). For n > 2 and
controlling on all qubits being in the |1i state, we then
need

���C(n)[X]
��� = 32n� 31

���C(n)[U ]
��� = 32n� 27 (G1)

standard gates. To this count we add 2 X-gates for each
time we control on a qubit being in the |0i state instead
of the |1i state. Using these results, the total number
of standard gates necessary for the counting operation
when simulating the m

th step is:

909dlog2(m+ nI)e � 1010 . (G2)

The above number includes many pairs of adjacent X

gates (coming from controlling on a |0i, rather than |1i)
that cancel. Ignoring all such X gates gives

ccount(m,nI) = 873dlog2(m+ nI)e � 968 . (G3)

The true answer lies in between (G2) and (G3); the e↵ect
is small and henceforth we ignore the di↵erence arising
from controlling on |0i versus |1i. We therefore write the

final answer as

Nsub1(m,nI) = ccount(m,nI) . (G4)

• •

• •

|�i |ai |bi

FIG. 9: Controls for the particle states �, fa and fb. It is
possible to rearrange the particle representation given in

(A1) to use only 2 controls for all, but subsequent
operations become more complicated in this case.

2. The second sub-operation, U (m)
e

Let’s now look at the operation in which we deter-
mine whether or not we had an emission, whose circuit is
shown in Figure 4. If we are at the m

th step, the largest
number of particles we can have is m + nI , while the
minimum is nI . This means that we have to apply Ue

gates controlled on all the possible combinations of three
integers, ranging from 0 to m+ nI , whose sum is in the
range [nI ,m+ nI ]. There are

c(m,nI) =
m+ 1

6
(m2 + 3mnI + 5m+ 3n2

I + 9nI + 6)

(G5)

such such combinations. For each of these we run a
C

(3dlog2(m+nI)e(Ue) operation, where the Ue gates are
RY (✓) rotations. Using the results from above about
C

(n)(U) operations, the total number of standard gates
necessary for the emission operation is

Nsub2(m,nI) = c(m,nI) (96dlog2(m+ nI)e � 27) .
(G6)

3. The third sub-operation, Uh

The next operation we need to break down is the cre-
ation of the emission history shown in Figure 5. If we
are in the m

th step of the evolution, we can have up
to m + nI particles in |pi, so we must run m + nI of
the sub-operations depicted in Figure 6. We notice that
the second part of the circuit for the sub-operation is the
same as the counting operation, except we have U� gates
instead of U+ gates. The U� gate is implemented very
similarly to the U+ gate, the only di↵erence being that
we control on work qubits being in the |1i state instead

|ei :
<latexit sha1_base64="WwMRA51Ti0ev8jZ97Z7GiQwGbo0="></latexit>

Boolean value

At each discreet time interval, 
algorithm rotates from f1, f2 

basis to fa, fb basis, performs 
shower in 4 separate steps, 

and rotates back to f1, f2 basis
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A quantum computer can compute the 2nf amplitudes 
using polynomial number of operators

3

type of fermion can be treated using a density matrix for-
malism [23], where each splitting function is represented
through a splitting matrix as

Pi!j�(✓) |fii hfj | . (10)

In the limit of g12 ! 0 we have Pi!j�(✓) ! �i,jg
2
i P̂ (✓),

but for non-zero g12 the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.

In what follows, we construct a quantum algorithm
to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algorithm
is to encode the particles as qubits (Appendix A) and
first rotate to a particle basis where there is no mix-
ing between fermion states (Appendix B). In this su-
perposition basis, emissions between states are uncorre-
lated. Sudakov factors can then be used to govern the no
emission probability of the uncorrelated fermions. The
bulk of the quantum circuitry will then be dedicated to
book-keeping, to encode the emission history and decide
which fermions/bosons radiate/split at a given step in
the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm for one of N

steps. The circuit calls for six registers, which are are de-
tailed in Appendix A and summarized in Table I. The ini-
tial state consists of nI particles (which can be fermions
or bosons) in the f1/2 basis. One starts by rotating this
initial particle state from the f1/2 basis to the fa/b ba-
sis, using a simple unitary R operation discussed in Ap-
pendix B. Then, a series of operations evolving the par-
ticles states are applied: the number of particles of each
type are counted (Ucount), Sudakov factors are used to de-
termine if an emission occurred (Ue), given an emission, a
particular particle is chosen to radiate/branch (Uh), and

the resulting particle state is updated (U (m)
p ). Finally,

the state is rotated back to the f1/2 basis through the
R

† operation. This process is repeated for all of the N

steps. The rotation needs to be performed separately at
each step because in general the matrix R depends on ✓

through the running of the couplings. At each step, there
are four operations, which are summarized in Table II.
More details can be found in the appendices.

Performing the evolution in the fa/b basis and then
rotating to the f1/2 basis, creates interferences between
equivalent final states which had di↵erent intermediate
fermions. One event is generated by measuring all of
the qubits after the final rotation back to the f1/2 basis.
By repeating the entire process, we can generate a large
number of events which we can then use to compute phys-
ical observables for our theory. The number of standard
quantum gates (single qubit and CNOT gates) required
at each step is discussed in Appendix I and summarized
in Table II.

Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog2(N + nI)e
|ei Did emission happen? 1

|n�i Number of bosons dlog2(N + nI)e
|nai Number of fa dlog2(N + nI)e
|nbi Number of fb dlog2(N + nI)e

TABLE I: All of the registers in the quantum circuit with
the number of qubits they require for N steps and nI initial
particles. The symbol d. . .e denotes the ceiling function.

|pi / R
(m) p p U

(m)
p R

(m)†

|hi / Uh h

|ei U
(m)
e e

|n�i /

Ucount

n�

Uh|nai / na

|nbi / nb

FIG. 1: Quantum circuit block for one step, to be repeated
N times for the full circuit.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. In order
to show an implementation of our algorithm, we there-
fore consider a special case that is amenable to measure-
ment on existing technology. This special case ignores
the � ! ff̄ splitting (naturally suppressed in gauge the-
ories, but not in the scalar-only theory), ignores the run-
ning coupling, and has only a single fermion (possibly
in a superposition) as the initial state. This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix I). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires ngates = 12N + 2 (Appendix G).
This model is however still su�ciently complex that the
classical MCMC described earlier2 fails to capture im-
portant quantum e↵ects when g12 6= 0.
Figure 2 presents the normalized di↵erential cross sec-

tions of four examples from a class of observables,
P

i ✓
↵
i ,

for both classical simulations/calculations, quantum sim-
ulators [29], and chip experiments of public and Hub

2
While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix K. However, this algorithm only works when ne-

glecting the � ! ff̄ and cannot solve our full model.

Operation Scaling

count particles 
Ucount

N ln(nf)

decide emission 
Ue

N nf ln(nf)

create history 
Uh

N nf2 ln(nf)

adjust particles 
Up

N nf ln(nf)

At each discreet time interval, 
algorithm rotates from f1, f2 

basis to fa, fb basis, performs 
shower in 4 separate steps, 

and rotates back to f1, f2 basis

classical algorithms scales as

N 2nf /2
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Figure 1: The normalized differential cross section for log ✓max (a,c) and the number of emissions

(b,d). Interference effects are turned on (g12 = 1) and off (g12 = 0), where the classical simu-

lations/calculations are expected to agree with the quantum simulations and measurements. The

top plots (a,b) show results for the case where � ! ff̄ is excluded as this can be run on current

quantum hardware. The bottom plots (c,d) include the � ! ff̄ with fewer steps to reduce the

computational complexity. The ratio plots compare the g12 = 0 and g12 = 1 simulation. Over 105

events contribute to each line and the statistical uncertainties are therefore negligible. Quantum

measurements are corrected for readout errors, as described in the Methods section.
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There are many things that needs to happen before this 
becomes truly useful

1.Apply to quantum interference effects of standard model

2.Reduce the circuit depth and required qubits

3.Find ways to make code more robust against noise

4.…………………………..

But our proof of principle that quantum interference 
effects in parton showers can be included using quantum 

algorithms is important first step
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• What are the most promising questions QC might provide a breakthrough 
ultimately


• What might be possible in various different scenarios  
[O(100) noisy qubits, O(100) clean qubits, O(1000) clean qubits etc


• Are there any special hardware requirements HEP has [size of system, 
connectivity etc]


• What kind of collaborations are envisioned between algorithm and 
hardware developers?

There are some important questions we need to try to 
answer in the Snowmass process


